Renal Handling of sodium and potassium ions

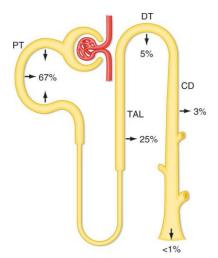
1- Renal handling of Sodium ions:

- Normal Na⁺ level (ECF) is 135 145 meq/L
- Na ⁺ is freely filtered and is actively transported out of all portions of the tubule except thin descending limb of loop of Henle.
- Na⁺ is transported by the activity of Na⁺ /k⁺ ATP ase pump at the basolateral membrane from inside of the tubular cells to the interstitial fluid.
- Normally about 99% of the filtered Na + is reabsorbed
- Na ⁺ Transport occurs in different tubular segments:
 - o PCT (~ 65%): Counter transport with H+, cotransport with amino acid, glucose, lactate, phosphate and paracellular diffusion.
 - o Thick Loop of Henle (25%): Na- K -2Cl cotransport, Counter transport with H⁺.
 - o Early D.C.T (5%): cotransport with Cl⁻
 - o The late DCT and collecting duct(3%) by ENaC

• Na⁺ reabsorption is regulated by :

- Angiotensin II : ↑ Na reabsorption by stimulating Na-K ATP ase Pump and Na-H counter transporter.
- Aldosteron stimulate Na⁺ reabsorption in the late DCT and CD through ENaC
- Atrial Natriuretic Peptide (ANP) inhibits Na reabsorption in the late DCT, CD through ENaC.

Note:


stimuli for rennin secretion:

- ♣ low Na delivery to DCT (macula densa)
- low pressure in the afferent arteriole (low ECF volume)
- **4** sympathetic stimulation

2- Regulation of K⁺ion:

i. Regulation of internal potassium distribution:

- Normal K⁺ level (ECF) is 3.5-5 mEq/L
- < 3.5 meq/l is hypokalemia
- > 5 meq/l is hyperkalemia
- 98 % of the total body K is intracellular and only 2 % in the extracellular fluid

• Control of K ions distribution between the extracellular and intracellular compartments also plays an important role in potassium homeostasis

Factors That Shift K ⁺ Into Cells (Decrease Extracellular [K ⁺])	Factors That Shift K ⁺ Out of Cells (Increase Extracellular [K ⁺])	756 mEq/day (180 L/day x 4.2 mEq/L) (31 mEq/day) (27% (204 mEq/day)
Insulin	Insulin deficiency (diabetes mellitus)	
Aldosterone	Aldosterone deficiency (Addison's disease)	
β-adrenergic stimulation	β-adrenergic blockade	
Alkalosis	Acidosis	
	Cell lysis	
	Strenuous exercise	
	Increased extracellular fluid osmolarity	12% (92 mEq/day)

ii. Renal Handling of K +:

- Easily filtered and reabsorbed :
 - o PCT (~ 65%) : paracellular passive reabsorption
 - o Thick ascending limb:(25-30%) Na- K -2Cl Cotransporter
 - D.C.T & C.D are the most important sites for regulating potassium excretion by the principal cells and intercalated where K⁺ can be reabsorbed or secreted according to the body needs.

• Regulation of K⁺ secretion

- 1- Extracellular fluid potassium concentration: (Hyperkalemia) stimulates the Na-K ATPase pump →↑ Intracellular K ion concentration→ ↑tubular K secretion while hypokalemia →↓K secretion.
- 2- Aldosterone \uparrow Na-k ATP ase pump activity and number of K^+ channels in the luminal membrane .
- 3- Tubular flow rate : \uparrow flow rate of the tubular fluid through the distal portions of the nephron $\rightarrow \uparrow$ K *secretion, because with rapid flow , tubular K *concentration cannot rise enough $\rightarrow \uparrow$ the driving force for potassium diffusion across the luminal membrane
- 4- \uparrow H ion concentration (acidosis) $\rightarrow \downarrow$ K excretion: K is reabsorbed by H,K-ATPase in collecting cells in exchange for H $^+$: \uparrow H $^+$ secretion $\rightarrow \downarrow$ K $^+$ excretion.